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a b s t r a c t

Invariant integrals of the linear isotropic theory of elasticity, determined by a certain specified elastic
field, are considered, and also invariant integrals generated by the interaction of the specified field with
an arbitrary secondary field. For all types of invariant integral, generated by the interaction of the specified
elastic field and an arbitrary secondary elastic field, transformations of the secondary fields are found for
which the invariant integrals considered turn out to be equal to the RG-integrals, determined by the
duality principle, of the specified elastic field and the transformed secondary elastic field. The invariant
J-, L- and M-integrals themselves are also expressed in terms of the RG-integrals of the specified elastic
field and its corresponding transformation.

© 2009 Elsevier Ltd. All rights reserved.

Invariant J-, L- and M-integrals1,2 are widely used in fracture mechanics to determine the elastic energy release rate during crack propa-
gation and for calculating stress intensity factors. Invariant integrals, depending on two stress states of the elastic body and characterizing
the interaction of these states, were introduced.3 Such integrals are a generalization of integrals introduced earlier1,2 and are used to sep-
arate the stress intensity factors, combinations of which are employed to express the elastic energy release rate.4–8 Similar problems are
also solved using integrals determined by the duality principle.9,10

The RG-integrals, determined by the duality principle, and various types of invariant integral began to be used comparatively
recently when solving inverse problems of defect identification in an elastic body.11–14 Since various integrals are used when solv-
ing problems of the same type and lead to similar results, the question arises as to the relation between these integrals. For the
plane problem of the theory of elasticity and a defect comprising a rectilinear crack, the relation between RG-integrals and invari-
ant J- and M-integrals was established.15,16 For the three-dimensional problem of the theory of elasticity and arbitrary defects, the
relation between RG-integrals and M-integrals characterizing the interaction of a specified elastic field with regular fields of spe-
cial form was established and demonstrated.12,14 A detailed review of results concerning invariant integrals and their application is
available.17

The aim of the present paper is to establish the relation in the general case between the J-, L- and M-integrals, and also the integrals of
interaction generated by these invariant integrals and the corresponding RG-integrals.

1. Formulation of the problem

Consider a linearly elastic isotropic body with a shear modulus � and Poisson’s ratio �, occupying the region ˝ = V\Ḡ, where V ⊂ R3 is
a simply connected region, G ⊂ V is a finite set, which below will be referred to as the defect, and Ḡ ⊂ V , Ḡ is the closure of the set G. The
defect G may be a cavity, a crack, an inclusion, etc. We will introduce the Cartesian system of coordinates Ox1x2x3. The stress–strain state
in the body � will be denoted by the superscript f’: �f

ij
is the stress tensor, ef

ij
is the strain tensor and uf = (uf

1, uf
2, uf

3) is the displacement
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vector. In the light of our assumptions concerning the material of body �, the following equations hold:

(1.1)

Here and below, summation over repeated indices is implied, and �ij is the Kronecker delta. Besides the specified stress state, we will also
consider secondary stress states, which will be denoted by the superscript r. The corresponding elastic field can satisfy Eqs (1.1) both in the
entire region V (i.e., can be regular) and only in the region � occupied by the body.

Consider the integral

(1.2)

where S is a closed surface, and n = (n1(x), n2(x), n3(x)) is the unit vector of the outward normal to surface S. It follows from the duality
principle that RGf(r) = 0 when the surface S does not contain the set G and S ∩ Ḡ = ∅. In the opposite case, the quantity RGf(r) may be
non-zero, and its value gives some information about the defect G. Note that, for all surfaces S containing the region G, such that S ∩ Ḡ = ∅,
the values of the integrals RGf(r) will be identical. These properties of the RG-integrals were used earlier11 to identify a plane crack.

From the invariance of the equations of elasticity theory in relation to translations, rotations and similarity transformations, the following
invariant integrals were obtained1

(1.3)

which possess the same properties as the integrals RGf(r). Here, �ij, eij and u = (u1, u2, u3) are the stress tensor, the strain tensor and the
displacement vector, respectively, for a certain stress–strain state in the elastic body, W = �klekl/2, ti = �ijnj and �ijk is the Levi-Civita symbol.

All integrals defined by Eq. (1.3) are zero if the closed surface S contains no defects. If any defect lies inside the surface S, the invariant
integrals may be non-zero, and their values provide information on the defect. Thus, all the invariant integrals (1.3) can be used to identify
the defect in a similar way to the use of the duality principle (1.2).

A superscript f will denote the invariant integrals for the elastic field uf: Jf
i
, Lf

i
and Mf. A superscript r will denote the invariant integrals

for the elastic field ur: Jr
i
, Lr

i
and Mr. Note that, when the field ur is regular, all the integrals Jr

i
, Lr

i
and Mr are zero; otherwise, they are

generally non-zero. We will consider the invariant integrals for the sum of fields with superscripts f and r, which will be denoted by a
superscript f + r. For the overall field we have

(1.4)

Integrals corresponding to the interaction between fields with superscripts f and r have the form

(1.5)

Integrals (1.5) are also invariant; they were introduced earlier3 and used12,13 to solve the problem of identifying a spherical cavity and
an elastic spherical inclusion.

Below, a slightly different notation of integrals (1.5) will be used, taking into account the equation �f
kl

er
kl

= �r
kl

ef
kl

. We will show that,
for each of the integrals represented by Eq. (1.5), a transformation of the field with superscript r will be found such that the corresponding
integral will be equal to the RG-integral of the field with superscript f and the transformed field.
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2. The relation between the J- AND RG-integrals

Let the vector function ur = (ur
1(x), ur

2(x), ur
3(x)) satisfy Eq. (1.1) either in the region V or the region �. Consider the vector functions

(2.1)

Since the system of Eq. (1.1) is invariant to translation, the vector functions uDkr(x) satisfy Eq. (1.1) in the same region as the vector function
ur(x)

Theorem 1. The following equation holds

(2.2)

Proof. To be spcific, we will consider the case k = 1. First, suppose we have a cube K with centre at the point x0 = (x0
1, x0

2, x0
2) and with

sides 2L (K = {x : |xi − x0
i
| ≤ L, i = 1, 2, 3}) such that Ḡ ⊂ K ⊂ V , Ḡ ∩ ∂K = ∅ and ∂K is the surface of the cube K. Since the integrals considered

do not depend on the closed surface enveloping region G, we will select the cube surface ∂K as the surface S. For the cube faces we will
introduce the notation

and for the integrals over these faces

(2.3)

From relations (1.2), (1.5) and (2.3) we have

(2.4)

We will consider successively the integrals over all cube faces. Taking into account that, on opposite faces, the calculation of the integrals
is quite similar, it is sufficient to consider the integrals over the faces S1, S2 and S3.

From Eqs (2.3) we have

(2.5)

We will transform the expression for JI1. From the second equation of (2.5) we obtain

Integrating by parts, and, for the unit vector of the outward normal to the contour ∂Sp bounding the face Sp, introducing the notation

we obtain

(2.6)

From Eq. (2.6) and the equations of equilibrium using the first equation in system (2.5) we have

(2.7)

For the integrals over face S2, according to expressions (2.3), after integration by parts in the second equation of (2.3) and introducing the
notation

we will obtain

(2.8)

Similarly, for integrals over face S3 we have

(2.9)
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In a similar way, integrals evaluated over the faces S4, S5 and S6 lead to the relations

(2.10)

Adding Eqs. (2.7)–(2.10), we obtain formula (2.2) for k = 1, since the integrals over the edges of the cube cancel out.
Eq. (2.2) for k = 2 and k = 3 is proved in a similar way.
Thus, Eq. (2.2) is proved when, in region V, it is possible to inscribe a cube containing the defect G. In the general case, the following

method is used to prove the theorem. In accordance with the accepted terminology,18 we will refer to the set

as a standard cube of rank n. Here, mi are integers. Standard cubes of rank n can intersect only along a face, an edge or a vertex. The union
of all cubes of rank n covers the space. We will put

where {K (n)
p } is the union of all standard cubes of rank n, such that K (n)

p ∩ Ḡ /= ∅. It is obvious that Ḡ ⊂ Q (n)
ext(G) and Q (n+1)

ext (G) ⊂ Q (n)
ext(G). A

number n = N is found such that Q (N)
ext (G) ⊂ V . Consequently, Ḡ ⊂ Q (N)

ext (G) ⊂ V . We will choose the boundary ∂Q (N)
ext (G) of the set Q (N)

ext (G) as
the surface S. This boundary consists of the faces of standard cubes of rank N, each of which is parallel to one of the coordinate planes.
Intergrating over the faces, as was done above, we obtain one of the relations (2.7)–(2.10). Then, adding these relations together, we obtain
formula (2.2), since the integrals over the edges cancel out.

Remark 1. The vector functions uDkr(x) satisfy Eqs (1.1), but, since the functions ur
i
(x) have the dimension of displacements, the functions

uDkr
i

(x) are dimensionless. On the strength of this, formula (2.2) can be understood in the following way

where l is the linear dimension and ulDkr(x) = luDkr(x).

Remark 2. From formulae (1.3) and (1.5) it follows that, if the initial field with superscript f is adopted as the field with superscript r, the
following equation will be satisfied

From this, and from formula (2.2), we have

(2.11)

3. The relation between the M- and RG-integrals

Consider the vector function

(3.1)

Since the elasticity theory equations (1.1) are invariant under a similarity transformation, the fact that the vector function ur(x) satisfies
system of equations (1.1) indicates19 that the vector function uHr(x) satisfies system (1.1) in the same region. Consider the vector function

(3.2)

This also satisfies Eqs (1.1) in the same region as the vector function ur(x).

Theorem 2. The following equation holds

(3.3)

Proof. The stresses corresponding to the displacements uPr(x) have the form

(3.4)

From relations (1.2), (3.2) and (3.4) we have

(3.5)
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Like the proof of Theorem 1, suppose initially that a cube K is found such that Ḡ ⊂ K ⊂ V . We will introduce the the following notation
for the integrals over the cube faces

(3.6)

From relations (1.5), (3.5) and (3.6) we obtain

(3.7)

Consider the quantities RM1 and MI1. We will rewrite the expression for MI1 in the slightly different form

Integrating by parts, we obtain

(3.8)

From the equations of equilibrium it follows that �r
k�,� = −�r

k1,1. After using this equation in formula (3.8), and comparing the expression
with the first equation in system (3.6) with p = 1, we obtain the equation

(3.9)

Similar equations can be written for the other faces of the cube

(3.10)

In these formulae, summation over the indices p and q is not carried out.
Adding Eqs (3.9) and (3.10), we ensure that the integrals over the edges of the cube cancel out. On account of this, and taking Eqs (3.7)

into account, we obtain Eq. (3.3).
In the general case, the proof of Theorem 2 is based on the same reasoning as the proof of Theorem 1. For this, the surface of the set

Q (N)
ext (G) must be adopted as surface S.

Remark 3. From relations (1.3) and (1.5) we obtain the equation Mf
int(f ) = 2Mf . From this equation and Eq. (3.3) we have

(3.11)

Remark 4. When ur
i
(x) are homogeneous functions of the order of m(ur

i
(kx) = kmur

i
(x)), formula (3.3) is converted into the formula obtained

earlier.12,14

Remark 5. Formulae similar to formulae (2.11) and (3.11) for the plane problem of the theory of elasticity and a defect in the form of a
rectilinear crack were obtained earlier.15,16

4. Relations between the L- and RG-integrals

Consider the vector functions

(4.1)
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The equations of elasticity theory (1.1) are invariant under rotation. On the strength of this, the vector functions uZkr(x) satisfy Eqs (1.1) in
the same region as the vector functions ur(x).19 The stresses corresponding to the displacements uZkr(x) have the form

(4.2)

Theorem 3. The following equation holds

(4.3)

Proof. To be specific, we will consider the case when k = 1. Initially, as above, suppose a cube K exists such that Ḡ ⊂ K ⊂ V . The surface of
the cube will be chosen as the surface S. For the integrals over the cube faces we will introduce the notation

(4.4)

From relations (1.2), (1.5) and (4.4) we have

(4.5)

We will consider successively the integrals (4.4) over all the cube faces. Since the integrals over opposite faces are evaluated in a similar
way, it is sufficient to evaluate the integrals over the faces S1, S2 and S3.

For the integrals over face S1, from Eqs (4.1), (4.2) and (4.4) we obtain

(4.6)

Note that, in the second equation of (4.6), j = 2, 3, k = 2, 3 and j /= k. Taking this into account and integrating by parts, we have

(4.7)

From Eqs. (4.6) and (4.7) we obtain

(4.8)

For the integrals over face S2 we have

(4.9)

We will transform the second formula in system (4.9)

(4.10)

and introduce the notation

Here, summation over �, � and 	 is not carried out.
Integrating by parts on the right-hand side of Eq. (4.10), using the equations of equilibrium and the first equation of (4.9), we obtain

(4.11)
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Similarly, for the integrals over face S3 we have

(4.12)

The integrals over the remaining faces of the cube are obtained in a similar way:

(4.13)

Adding the integrals over all the cube faces, it can be shown that the integrals over the edges of the cube cancel out, and we arrive at
formula (4.3). To prove formula (4.3), in the general case it is necessary, as above, to consider the surface of the set Q (N)

ext (G).

Remark 6. From relations (1.3) and (1.5) we have

(4.14)

From relations (4.3) and (4.14) we have

(4.15)
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